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The effect of Brownian motion of particles in a statistically homogeneous suspension 
is to tend to make uniform the joint probability density functions for the relative 
positions of particles, in opposition to the tendency of a deforming motion of the 
suspension to make some particle configurations more common. This smoothing 
process of Brownian motion can be represented by the action of coupled or interactive 
steady ‘thermodynamic ’ forces on the particles, which have two eEects relevant to the 
bulk stress in the suspension. Firstly, the system of thermodynamic forces on particles 
makes a direct contribution to  the bulk stress; and, secondly, thermodynamic forces 
change the statistical properties of the relative positions of particles and so affect the 
bulk stress indirectly. These two effects are analysed for a suspension of rigid spherical 
particles. I n  the case of a dilute suspension both the direct and indirect contributions 
to the bulk stress due to Brownian motion are of order $2, where $( < 1 )  is the volume 
fraction of the particles, and an explicit expression for this leading approximation is 
constructed in terms of hydrodynamic interactions between pairs of particles. The 
differential equation representing the effect’s of the bulk deforming motion and the 
Brownian motion on the probability density of the separation vector of particle pairs 
in a dilute suspension is also investigated, and is solved numerically for the case of 
relatively strong Brownian motion. The suspension has approximately isotropic 
structure in this case, regardless of the nature of the bulk flow, and the effective visco- 
sity representing the stress system to order $z is found to be 

,u” = ,u( 1 + 2.5$ + 6.2$2) 

The value of the coefficient of $2 for steady pure straining motion in the case of weak 
Brownian motion is known to be 7.6, which indicates a small degree of ‘strain 
thickening’ in the +term. 

1. Introduction 
It has been known for some time that Brownian motion has an important effect on 

the rheological properties of a suspension of small particles. This is usually manifested 
as a dependence of one of the rheological parameters, for example the mean shear 
stress divided by the mean rate of shear, on the dimensionless ratio ,ua3ElkT, where 
,u is the viscosity of the (Newtonian) suspending fluid, a is a linear dimension of the 
particles, E is the relevant mean velocity gradient, k is Boltzmann’s constant and T 
the absolute temperature. The parameter ,ua3ElkT can be regarded as a measure of 
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the ratio of the rate of change of some quantity due to convective or hydrodynamic 
effects and that due to Brownian diffusion. For steady simple shear flow of a dilute 
suspension of prolate spheroidal particles, for example, the ratio of mean shear stress 
to mean rate of shear varies monotonically between a stationary value at  pa3E/kT < 1 
and a second stationary value at  pa3ElkT B 1 which is smaller, by a factor which is 
large in the case of long thin particles (Hinch & Leal 1972). ‘Shear thinning’ behaviour 
of this kind is readily explained by the tendency for the bulk flow to align the largest 
diameter of the particles preferentially with the mean streamlines, in opposition to  the 
orientational spreading effect of Brownian motion. It is not at  all easy to see what 
might be expected in the case of a suspension of spherical particles on which orienta- 
tional diffusion of individual particles has no effect. 

If a suspension of rigid spherical particles in a Newtonian fluid is so dilute that for 
hydrodynamic purposes each particle may be regarded as being alone in infinite fluid, 
the suspension is isotropic in structure and is characterized by an effective viscosity 
p* given, as found first by Einstein (1906), by 

correct to the order of q5, the volume fraction of the particles. Brownian motion of an 
isolated particle has no influence on the velocity and stress in the fluid due to the 
presence of the particle in the bulk flow, and so the result ( l . t )  is independent of 
Brownian motion. Outside the small range of values of q5 for which (1.1) is a good 
approximation (usually accepted as q5 < 0.02), the effect of hydrodynamic interactions 
is important. We shall see that, when hydrodynamic interactions are relevant, so too 
is Brownian motion; both effects make their first appearance in the expression for the 
mean stress when terms of order $2 are considered. 

This paper has both a general and a specific purpose. The general purpose is to give 
a theoretical analysis of the way in which Brownian motion affects the bulk stress in 
a suspension of (hydrodynamically) interacting rigid spherical particles which is being 
deformed, and in particular to derive an explicit expression for the rather mysterious 
direct contribution to the bulk stress made by Brownian motion. The specific purpose 
is to describe a calculation of the bulk stress in a dilute suspension correct to order $2 

for the case of dominant Brownian motion (pa3E/kT < 1).  
The specific calculation of the bulk stress to order $2 described herein is based on the 

work of two previous publications concerned with suspensions of spherical particles, 
one about the effect of hydrodynamic interaction of pairs of spheres, in the absence of 
Brownian motion, on the rheological properties of the suspension (Batchelor & 
Green I972 b )  and the other about the effect of hydrodynamic interaction of spheres on 
the diffusional properties of spherical particles (Batchelor 1976). The result of the 
first paper was an expression for the bulk stress in the suspension, in the absence of 
Brownian motion, correct to order q52. The calculation could not be completed numeric- 
ally for the particular case of a bulk steady simple shearing motion because the 
probability distribution of particle pairs is then not fully determinate in the absence 
of Brownian motion, but for a bulk pure straining motion it was found that the bulk 
stress is of Newtonian form with the effective viscosity 

(1.2) 

Extension of this calculation of the mean stress to order $2 to include the effect of 
Brownian motion of the particles requires use of the results obtained in the second 

P* = p(1+3q5) (1.1) 

,u* = p { l +  $4 + 7*6#2 + O(q53)). 
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of the two papers mentioned, in which the classical expression for the Brownian 
diffusivity of effectively isolated spherical particles was generalized to take account 
of hydrodynamic interactions between pairs of particles. 

Our later discussion of the direct contribution to the bulk stress made by Brownian 
motion will be based on an important general result concerning Brownian motion. 
It is that the translational diffusional flux, due to Brownian motion, of a particle in 
a group of m hydrodynamically interacting particles is the same as that produced by 
certain steady forces acting on the particles, that on a particle a t  position xi being 

where P(x,, . . . , x,) is the joint probability density function for the positions x,, . . . , X, 

of the m particles. (The expression (1.3) will be used only for values of xl, . . . , X, such 
that the spherical particles do not overlap geometrically. When overlapping positions 
of the particles are allowed, it is necessary to introduce additional intermolecular 
forces between particles; but for the case of rigid particles to be considered here w0 
may avoid that by restricting the range of integration of xl, . . . , x, to non-overlapping 
values.) These thermodynamic forces reproduce the statistical bias in the random 
walks of the particles which results from the non-uniformity of the joint-probability 
density function. The idea of a ‘thermodynamic force ’ as a determinate artifice for the 
calculation of diffusional fluxes has long been familiar in macromolecular science, and 
was used explicitly by Einstein (1905) in his pioneering work on Brownian motion 
of effectively isolated spherical particles (the case m = 1 )  in a very dilute suspension. 
Some explanation of, and justification for, the concept of the equivalent thermo- 
dynamic force is given in my recent paper (Batchelor 1976). 

We are concerned here with a statistically homogeneous suspension, for which 
P(x,, . . . , x,) is invariant under translation of the configuration represented by the 
m points x,, . . . , x, and for which, as a consequence, 

m 
C Fi = 0. 

t = 1  

For a homogeneous suspension, diffusional flux does not have the common implication 
of transport of particles relative to spatial axes, but refers to movements of particles 
relative to each other. Putting it in concrete terms, if, as a consequence of special 
initial conditions or of the deforming action of a bulk flow, the particle configurations 
show a preference for, say, close groups, the effect of Brownian motion is to diffuse 
particles away from each other a t  a rate which can be calculated from (1.3) and the 
hydrodynamic relations giving the response of particles to imposed steady forces. 
This has consequences for the rheological properties of the suspension, because the 
exertion of forces with zero resultant on a group of particles, and hence on the suspen- 
sion, contributes to the bulk stress. 

The effects of electrical and Van der Waals forces between particles wil  not be 
included in our analysis. 
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2. The general expression for the bulk stress 
We recall first the expression for the bulk stress in a homogeneous suspension of 

small force-free particles subjected to a statistically uniform deforming motion in 
the absence of Brownian motion (Batchelor 1970). The bulk stress C is here equal to  
the average contact or mechanical stress in the suspension, and an ensemble average, 
to be denoted by angle brackets, is equal to  the average over a volume V containing 
N ( 9  1)  particles; hence 

where aH is the local contact stress, V, is the volume of the fluid portion of V ,  is the 
volume of a particle with centre at  xi, and eH is the rate-of-strain tensor a t  a point in 
the suspending fluid. The superscript H (for hydrodynamic) provides a reminder that 
the motion considered is due entirely to the bulk deformation imposed at  the outer 
boundary. All material elements, both in the fluid and in the particles, are in equili- 
brium under the action of the mechanical stress system alone, whence we have 

where I.T. denotes an isotropic term, E is the average rate-of-strain tensor in the 
suspension and, for rigid particles, 

” 

is the (deviatoric) force dipole strength of the particle with centre a t  xi obtained from 
the distribution of contact stress in the suspending fluid over the particle surface Ai. 
The summation in (2.2) over a large number of identical particles in the volume V 
is equivalent to N times an average of S H  over all configurations of the surrounding 
particles, and we may write 

1 N  - S H  = n(SH),  
V.+l 

where n ( = N / V )  is the number density of the particles. 
These expressions will now be modified to include the effect of Brownian motion of 

the particles. The statistical properties of the relative positions of particles are of 
course affected by Brownian motion, and this leads indirectly to an effect on the bulk 
stress which will be considered later. I n  this section we are concerned with the direct 
or explicit change in the expression ( 2 . 2 )  with ( 2 . 3 )  for the bulk stress due to the 
existence of Brownian motion. This change is an addition to the above expression, 
because for the sniall particles under consideration the equations governing the fluid 
motion in the neighbourhood of a particle are linear and the stresses in the fluid due to 
bulk motion and due to the Brownian motion of particles are superposable. 

The key to determination of the direct additional contribution to the bulk stress 
due to Brownian motion of particles is the principle referred to in the introduction, 
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namely that, when the joint probability density of the positions of a number of particles 
is non-uniform, the resulting translational diffusion of the particles due to Brownian 
motion is the same as if, and has the same mechanical consequences as if, each particle 
were acted on by a certain steady force given by (1.2). According to this principle the 
additional bulk stress due directly to the existence of Brownian motion of the particles 
is simply the bulk stress that is generated by the application of coupled forces to 
particles suspended in fluid otherwise a t  rest. For the large group of N particles in a 
volume V of the suspension, the force on a particle of the group with centre a t  xi is 
as given by (1.3) with m = N ,  and the sum of these forces for i = I ,  . . . , N is zero in 
view of the statistical homogeneity of the suspension. 

It is important to appreciate that the thermodynamic forces should be treated as 
interactive forces. The actual fluctuating thermal forces on particles which cause the 
diffusion are exerted by the fluid medium, but the statistical result of the Brownian 
motion of the particles is the same as if the particles exerted the fictitious steady 
forces (1.3) on each other. It is as if the particles interacted through the existence of an 
electric field, or, t o  construct a mechanical picture, as if the particles were joined to  
each other by elastic rods which transmit the force but which do not cause any hydro- 
dynamic disturbance in the fluid, the electrical energy of the field or the elastic energy 
of the system of rods being kTlogP(x,, ..., xN). This is not simply a permissible 
interpretation, it is essential to hypothesize a thermodynamic field or stress system 
throughout the medium which satisfies the relations 

(2.4) 1 V .T = Fi/K 
= 0 

at points within a particle at xi 
a t  points in the fluid, 

where7 is the loca1 thermodynamic stress tensor. 
We proceed now to consider the direct contribution to  the bulk stress due to 

Brownian motion of the particles (CB say), that is, the bulk stress in a suspension in 
which the mean rate of strain is zero and which is in motion solely as a consequence 
of the steady forces Fi exerted on the spheres. There are two kinds of local stress in 
this Brownian flow system, the mechanical or contact stress aB (of which the deviatoric 
part is 2peB at points in the fluid) and the thermodynamic stress7, both of which are 
stationary random functions of position in the suspension. Since inertia forces are 
negligible everywhere 

The bulk stress is an average of the sum of all the different kinds of local stress, so 
V.(CB+T) = 0. (2 .5 )  

ZB = (.B) + (7). 
By repeating the argument that leads to (2.2), we find 

1 
= I.T. + 2p(eB) +- I: S,B, 

V i  
where SF is related to aB in the way that S$ is related to  aH in (2.3). (And note that 
whereas inclusion of the term xi is arbitrary in (2.3), because 

ILti aH .ndA = 0,  
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it is essential in the corresponding expression for SF since aB .ndA is non-zero, 

being equal to - F,.) The mean rate of strain in the medium in this flow field is zero, 
so that (eB) = 0 in (2.6). 

To determine the mean thermodynamic stress, we may consider the consequences 
of a virtual small uniform strain of the configuration of particles in the suspension. 
The gain in energy of the thermodynamic field in a part of the suspension of volume 
V containing a large number of particles N may be expressed first as 

VK : (T), 
and second as 

Li 

. .  

since the virtual strain K is arbitrary. 

at rest is thus 
The bulk stress due to the thermodynamic forces in a suspension which is otherwise 

(2.8) 
1 

CB = (@)+(T) = I.T. +- C (s$-XiFi). 
V i  

The last term in (2.8) is not affected by the choice of origin of the reference frame 
because ZF, = 0. The contribution (2.8) to the bulk stress might be called the diffusion 

stress. As a partial check on the correctness of (2.8), we note that, if all the particles 
are members of isolated touching pairs of equal spheres with thermodynamic forces 
parallel to the line of centres, the mechanical stress aB is zero everywhere except at the 
contact point where there is a concentrated contact force -F, on one sphere and 
- F, on the other, so that 

i 

S,” + Sf = - &(x, - XI) F, + +(x,- XI) F,, 

= xi F1+ x,F, 

since F, = - F,. It appears therefore that CB = 0 in this case, which is what would be 
expected when Brownian motion cannot change the configuration of particles. This 
example also serves to reveal that the term S$ in (2.8) is a consequence of the finite 
size of the particles. 

The bulk stress in a suspension of particles in Brownian motion which is being 
deformed is now obtained by superimposing the two contributions (2.2) and (2.8): 

c = C H + C B  

1 N  
= I.T.+2pE+-;? C (S$+S$-xiFi), 

v i = l  

where S H  and S B  are both given in terms of the mechanical stress a t  the surface of the 
particle by (2.3), but the stress distributions are of course different in the two cases. 
S H  corresponds to the stress generated in a suspension of force-free spheres without 
Brownian motion subjected to a deforming motion and S B  corresponds to the stress 
generated in the fluid by spheres moving solely under the influence of the thermo- 
dynamic forces. 
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We repeat that, in addition to the direct contribution to  the bulk stress due to 
Brownian motion represented by the last two terms of (2.9), there is an indirect effect 
of Brownian motion through its influence on the joint-probability-density function 
P(x,, x2, . . . , xN) which appears as a weighting function in the integral expression for 
the ensemble average of quantities like SH. 

3. An alternative form of the direct Brownian contribution to the 
bulk stress 

We propose here to use the reciprocal theorem for Stokes flow first established by 
Lorentz (1906) to obtain another form of the contribution (2.8) due to the thermo- 
dynamic forces. The reciprocal theorem states that 

1.’. a” .ndA = 1u”. a’.ndA, (3.1) 

where u’, 0‘ and u“, a” denote the fluid velocity and mechanical stress in two alternative 
Stokes flow systems for fluid occupying a certain region and the integrals are taken 
over the whole of the surface bounding this region. We choose a region of volume V 
with exterior boundary A and bounded internally by N equal rigid spheres with 
centres at xl, ..., xN and surfaces A,, ..., AN, both V and N being large. 

For the first flow system we choose 

u ’ = u H - E . x ,  a’= aH-22/~E; 

that  is, u’ and a‘ denote the change in the velocity and stress due to the presence of N 
force-free couple-free rigid spheres in fluid in which the velocity would otherwise 
be E .x  everywhere, where E is a constant rate-of-strain tensor (symmetrical and 
traceless). Thus 

u’ = Ui +GI, x (x-xi) - E . x  on A,, (3.2) 

where Ui and ai are the translational and rotational velocities of the sphere a t  xi in 
the flow system represented by uH and aH. 

For the second flow system in the same region we choose U” = uB, a” = aB, corre- 
sponding to spheres moving under the action of forces Fi (i = 1, . . . , N )  and zero couple 
in fluid which is otherwise a t  rest, with CF, = 0 and 

i 

J”aB.ndA = - F ~ .  (3.3) 

Now the contributions to the surface integrals in (3.1) from the outer boundary A 
increase less rapidly than V as V (and N )  + 00, because the integrands are of bounded 
magnitude. We also have 

uB.(aH-2pE) .ndA = 0 Li 
because the spheres are force-free and couple-free in the flow system represented by 
uH and oH.  Hence (3.1) reduces to 
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and on substitution from (3.2) and the use of (3.3) we find 

This interesting relation provides another interpretation of the last two terms in 
(2.9) representing the direct contribution to the bulk stress due to the thermodynamic 
or Brownian forces. For suppose that the homogeneous suspension of spheres is sub- 
jected to a deforming motion characterized by a uniform mean rate-of-strain E. The 
rate of dissipation per unit volume in a steady viscometric flow of the suspension 
may be obtained from the bulk stress and the bulk rate of strain (Batchelor 1970), 
being equal to E : 2, and it appears from (2.9) and (3.4) that the Brownian forces make 
a direct contribution 

1 
- - Ui . Fi (3.5) v i  

to this rate of dissipation, where Ui is the translational velocity which a sphere a t  
xi would have in the absence of the Brownian forces. The rate of working by the 
Brownian forces is evidently the same as if each sphere was moved by those forces at  
such a velocity relative to the fluid as would keep it stationary when the whole 
suspension is subjected to  a uniform deforming motion. 

The relation (3.4) is also useful analytically. The sphere velocity Ui is obviously a 
linear function of E, and may be written as 

Ui = E . x i + E : C i ,  (3.6) 

where the third-rank tensor Ci represents the effect of the presence of the surrounding 
spheres on the velocity of a sphere a t  xi (in the absence of Brownian forces) and is 
chosen to be symmetrical and deviatoric in the first two suffixes that are contracted 
with those of E. All terms in (3.4) are now linear in E, and since E is an arbitrary 
tensor, aside from being symmetrical and having zero trace, we find 

N 
C (SF+ Ci.  Fi) = 0. 
i=l 

(3 .7)  

The expression (2.8) for the direct Brownian contribution to  the bulk stress may thus 
be written as 

and, on use of the expression (1.3) for Pi, 

kT kT Vi . {(Ci + xi I) P} 
P 

= I.T. - - C 8, . ci + - C 
V i  v i  , 

in which V, denotes the divergence operator with respect to xi and is contracted with 
the last suffix of Ci and of xi I. 

Now the summation over an indefinitely large number of particles is equivalent 
to an average over all possible configurations of the position vectors xl, x2, . . . , xN 
of the N particles in V ,  and the second summation in (3.8) can thus be written as 



EJect of Brownian motion on bulk stress 105 

where WN stands for the configuration xl, x2, . . . , xN, the integrat'ion is over all possible 
values of these position vectors in V ,  and K is the normalizing factor J" PdVN. The 
integral clearly has the same value for i = 1,2,  . . . , N ,  so, on taking i = 1 as represent- 
ative, 

- - ""IJV,. {( c, + x, I) P} dx, dYN-, 
K 

where A is the (geometrical) outer boundary of V and A; is the closed boundary of 
one of the inner regions from which x, is excluded by the requirement of no overlapping 
of spheres, n being the unit outward normal in both cases. 

Consider the first of the two terms of (3.9), in which Jxll is large (since it is implied 
that the origin is somewhere in the interior of V ) .  Both C, and P are functions of the 
configuration xl, x,, . . . , xN, but if the order of integration be interchanged, so that the 
integration with respect to %'-, is carried out first, 

are approximately constant for x, on A ;  and then the integral of n with respect to 
x, over A is zero and the integral of x,n is isotropic. Thus only the second of the 
two terms in (3.9) survives, and 

(3.10) 
nkT 

( C, . n + x, n) P dx, dvN-,. 
kT z" = I.T. - - 2 vi . ci - - v i  ?/!Aj 

The last term looks complicated but presents no problems for the dilute suspensions 
which we shall now consider. 

The bulk stress is now the sum of (2.2) and (3.10), giving an alternative expression 
to (2.9). 

4. The bulk stress to order $2 

The above expression for the bulk stress in the suspension holds for all values of 
the particle volume fraction g5( =+a3n). We propose now to adapt to the case $ < 1 
and, specifically, to  obtain a form which is correct to the order of $z and which will 
allow numerical evaluation. 

If the suspension is so dilute that  the fluid motion near each particle is effectively 
independent Gf the existence of other particles, the bulk straining motion cannot 
cause any statistical connections between the positions of particles and so P(xl, x2, . . . )  
becomes a product of functions of each of the position vectors x,, x,, . . . . The thermo- 
dynamic force on the sphere a t  xi then reduces to 

a log n 
= - k T -  = 0. 

a log P(Xi) Fi z -kT axi axi 

Consequently the direct contribution to  the bulk stress due to Brownian motion is 
zero. The hydrodynamic force dipole strength S H  is the same for all particles and can 
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be seen, from a knowledge of the flow due to a single sphere in a bulk deforming motion, 
to be 

S H  M _2,0_a3pE, = SF say, (4.1) 

showing that to order c$ the bulk stress in a suspension of spheres is of Newtonian form 
with the effective viscosity p (  1 + @). 

For larger values of q4 the effect of hydrodynamic interaction of the particles must 
be allowed for. The probability that in a particular realization of the suspension there 
is one other particle within a certain distance of a given particle is proportional to q5, 
and the probability of there being two particles in this region is proportional to q52. 
This suggests that the first approximation to the effect of hydrodynamic interaction 
of particles may be obtained by considering only pairwise interaction of particles, 
and that the value of ( S H )  correct to order qj is obtained from the integral of SH(r) - SF 
(where SH(r) is the force dipole strength of a sphere in the presence of another sphere 
whose centre is a t  separation r, both spheres being force-free and embedded in the 
given bulk deforming motion) over all values of r, with an appropriate probability 
weighting function. However, such an integral is not absolutely convergent, and it is 
necessary to recast the ensemble average before reducing it to an average over the 
separation of sphere pairs. It may be shown (Batchelor & Green 1972b) that, correct 
to order c$2, 

n(SH) = nS2 +n2/[{SH(r) - SF}p(r) -3+7a3p{e(r) - E}]dr, (4.2) 

where np(r) ( =  P(x+ rlx), the probability of a sphere centre being in unit volume at  
x + r conditional on a second sphere centre being at  x) is the pair probability density 
function satisfying the condition p(r) --f 1 as r --f 00, and e(r) is the rate of strain at  
position r relative to the centre of a sphere embedded in the bulk deforming motion. 
The components of SH(r) have been calculated approximately from the hydrodynamic 
boundary-value problem for two force-free spheres in an otherwise uniform deforming 
motion (Batchelor & Green 1972a), and values of p(r) have also been found for the 
particular case of a bulk steady pure straining motion, giving the result (1.2) for the 
effective viscosity of the suspension in the absence of Brownian motion. 

Consider now the approximation, correct to order q42, to the direct contribution to  
the bulk stress due to Brownian motion as given by (3.1 0). We note first that, when the 
suspension is so dilute that a sphere interacts hydrodynamically with only one other 
sphere, the thermodynamic forces on two spheres with centres at x1 and x2 reduce to  

a log P(X1, x2) , F2 = -kT F1= -kT a log P(X1, x2) 

8x1 ax2 
Then since 

We shall see in Q 5 that p(r) - 1 is never of larger 
showing that IF1 is of order ( a / ~ ) ~ .  

F(r) say. (4.3) 

order t,han when a/r $ 1, 
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We shall also need to use the following expression for the relative velocity of two 
isolated force-free spheres immersed in a pure straining motion: 

where A and B are scalar functions of r( = (rl) (see Batchelor & Green 1 9 7 2 ~ ) .  It then 
follows from the symmetry relation 

U,- E .x, = -(Ul- E .x,) 

that the tensors C, and C, defined by (3.6) are given, for this case of an isolated pair 
of spheres, by 

where 
C, = -Cl, = C(r) say, (4.5) 

(4.6) 
r r r  

C. 3 kl (r) = - ( A  - B )  +Qrlaj,A - i(rjakf+rkJjf) B, 

the first two suffixes being contracted with E in (3.6). The divergence with respect to 
the last suffix is then 

V, . C, = V, . C, = 0,. C(r) 
and 

where 
dA 1 d(r3A) W ( r )  = -3 (A-B) -r -  = 3B--- 
dr r2 dr ' 

It is known that 

as a/r -+ 0. 
The approximation to the first summation in (3.10) that takes account of pair 

interactions only is straightforward, in view of the rapid approach of V, . C to zero 
as a/r -+ 0, and gives 

A ( r )  N 5 ( ~ / r ) ~ ,  B(r) N - ' $ ( ~ / r ) ~ ,  W ( r )  N 7 5 ( ~ / r ) ~  (4.9) 

(4.10) 

correct to order qP, this integral being absolutely convergent. 
Consider now the second summation in (3.10). When 4 4 1 a large fraction of the 

closed surfaces A; will be spheres of radius 2a enclosing one of the particles, and the 
probability of another sphere of the configuration being nearby is small. For 
x1 on one of these spheres, say that with centre at x,, and on choosing the origin to 
be at the point of contact of the two spherical particles where the undisturbed fluid 
velocity is zero (as we must for consistency with the definition (3.6)), we have 

(C, .n+x,n)Pdx,  = {C(r) .n++)n2p(r)dr 
r=2a 

(4.11) 

But when two spheres embedded in a pure straining motion are touching, the com- 
ponent of their relative velocity parallel to the line of centres is zero; that  is, in view of 
(3.6) and (4.5), 

r . E . r + 2 E : C . r  = 0 
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when r = 2a. It follows that the integrand of (4.11) is zero, and that the second sum- 
mation in (3.10) is zero to leading order in $. 

The direct contribution to the bulk stress due to Brownian motion, correct to the 
order $2, is thus 

Z* = I . T . - i n ~ k ~ j  w(r) (:-il)p(r)dr. (4.12) 

The sum of the expressions (4.2) and (4.12) is the contribution to the bulk stress due 
to the presence of the particles, correct to the order q52. Further progress with the 
evaluation of these expressions requires information about the function p(r) .  This 
brings in the indirect effect of Brownian motion on the bulk stress. 

r 2 2 a  

5. The equation for the pair-distribution function for a dilute suspension 

about the two points x1 and x2 is 
The probability that sphere centres will be found simultaneously in unit volumes 

P(X1,  x2) = P ( X J  P(X,IX,) = n2p(r), 

where r = x2 - x1 and p(r)  is the pair-distribution function. In  a suspension of equal 
spheres of radius a, the dimensionless quantity p is a function of rla, defined over the 
range 2 < rfa < 03, and perhaps also oft. 

Suppose that the suspension is subjected to a bulk deforming motion characterized 
by the instantaneous bulk rate-of-strain tensor E and the bulk angular velocity S2. 
Then if the suspension is dilute, and Brownian motion is absent, the differential 
equation for p(r ,  t )  is the conservation relation 

2 + V . ( p V )  at = 0, 

where V(r) is the relative velocity of the members of an isolated pair of force-free 
spheres with relative position r in fluid whose velocity in the absence of the spheres is 
x . E + f2 x X. The relative velocity V can be written as 

V(r )  = r . E + 2 E :  C + B x r ,  (5.2) 

where the third-rank tensor C is the function of r already given in (4.6). The solution 
of (5.1) has been shown by Batchelor & Green (19723) to be equivalent to the statement 
that p(r, t ) / q ( r )  is constant for a ‘material’ point in r-space whose velocity is given as a 
function of r and t by V, where 

and has been eva1uated.t In particular, for any material point in r-space which 
comes from infinity, where q = 1 and p(r) may be taken to be unity (no long-range 
statistical connexions), there is the very simple and powerful result 

p(r9 t )  = d r ) .  (5.4) 

t This is a convenient place for an admission that the relation (3.13) in the paper by Batchelor 
& Green (1972b),  described there &s ‘ a simple integral identity’ for the function q(r) ,  may not 
be correct. The argument used to obtain it is false, and there is no reason now to think it is an 
identity, although numerically it is apparently not far from being correct. None of the other 
results or conclusions of the paper is affected. 
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In  steady pure straining motion, all trajectories in r-space come from infinity; as a 
consequence, the pair-distribution function is independent of t  and of the direction of 
r, and the bulk stress to order c$2 is Newtonian in form (with the effective viscosity 
(1.2)). On the other hand, in steady simple shearing motion there is a region, with the 
interior boundary r = 2a, in which the trajectories are all closed, and the difficulty 
then arises that the above hydrodynamic relations are insufficient to determine the 
steady-state values of the constant p ( r ,  t)/q(r) for the different material points on 
closed trajectories in this region. 

If now we allow for Brownian motion of the particles, an additional term must be 
included in equation (5.1) to represent the effect of relative movement of the two 
spheres under the action of the equal and opposite thermodynamic forces on the 
spheres. The relative velocity of the two spheres due to these thermodynamic forces 
F and - F can be written as 

@ll+ b22 - b12 - b21) . F, (5.5) 

where bll, b22, bI2, b,, are mobility tensors defined and evaluated as functions of r 
in my previous paper (Batchelor 1976). The new form of (5.1) is then obtained simply 
by replacing V by the sum of V and the velocity (5.5), with F being given by (4.3). 
This is wholly equivalent to the more conventional procedure of introducing a relative 
Brownian diffusivity tensor 

(5.6) D(r)  = kTfb1, + b22 - bl, - b21f 

and writing the equation as 
-+V.(pV) aP = V.(D.Vp). 
at (5.7) 

When use is made of the fact that the configuration of two spheres is symmetrical 
about the direction of r, the various mobility tensors can be written in terms of 
functions of r ,  and the final (exact) form for the diffusivity (5.6) is 

where Do = kT/37rpa. The two scalar functions G ( r )  and H ( r )  increase monotonically 
over the range 2 6 ./a < 00, and their asymptotic forms are 

and 
G N  2(p-2), H-+0.401 as p + 2  (5.9) 

(5.10) 
H = 1 - $p-1- &p-3 + O(p-6) '1 G = 1 - $p-1 +p-3 - JL& -4 + O(p-6) 

4 P  

for p 9 1,  where p = r/a. 
The differential equation (5.7) is to be solved subject to the boundary conditions 

r . D . V p = o  a t  p = 2  

and p + I  as p-+00, 

the former of which excludes the possibility of relative diffusive flux of two touching 
spheres in the direction of the line of centres. 

The relative importance of the convection and diffusion terms in (5.7) is measured 
by the ratio Ea2/Do, = 37rpa3E/kT, where E is a representative bulk velocity gradient, 
say one of the principal rates of strain. When Ea2/Do 9 1, the diffusion term is relatively 
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small; but as is well known in fluid mechanics a highest-order differential of this kind 
can have a singular perturbing effect on the solution for the pair-distribution function. 
There is no reason to suppose that a small amount of Brownian diffusion would bring 
about a non-small change in the pair-distribution function in the case of a bulk flow 
consisting of a steady pure straining motion, and the solution (5.4) is presumably 
the first term in an expansion in powers of (Eu2/D,)-l which is valid for sufficiently 
small values of (Eu2/D0)-l in that case. On the other hand, in the case of a steady 
simple shearing motion, for which some of the trajectories in r-space are closed, it 
seems likely that the existence of a small amount of Brownian diffusion, operating 
over the very long time needed to set up the steady state from arbitrary initial con- 
ditions, makes determinate the relation between the constant values of p(r, t)/q(r) for 
different material points in the region of r-space occupied by closed trajectories; 
there is an analogy here with the way in which a small amount of molecular transfer 
of momentum or heat makes determinate the distribution of vorticity or temperature 
in the region occupied by closed streamlines of a steady flow system. Investigation 
of this singular perturbing effect of a small amount of Brownian diffusion on the pair- 
distribution function in a steady simple shearing motion would be valuable, in view 
of the important role of this kind of bulk flow in practice and in experimental rheology, 
but the complex character of the closed trajectories due to the hydrodynamic velocity 
V alone (see Batchelor & Green 1 9 7 2 ~ )  suggests it will be a difficult calculation. 

We shall examine here the other extreme, Eu2/Do < 1, at which Brownian motion 
effects are relatively strong. The first approximation to the pair-distribution function 
in these circumstances is obtained by dropping both terms on the left-hand side of 
(5.7)) giving 

p(r,t) = 1 for 2u 6 r < 00. 

If now we write 
p(r, t )  = 1 +PIP, t )  + O((Ea2/D,)2) 

and substitute in (5.7)) we obtain 

(5.11) 

V. (D.Vp,)  = V . V  (5.12) 

as the equation for the perturbation of the uniform pair distribution. p1 is evidently 
linear in E, and must therefore be of the form 

(5.13) 

where Q is a dimensionless function of p( = r/u) .  Substitution of the expressions for 
p, and D from (5.13) and (5.8) in (5.12) then gives 

u2V.[r.E.(-T---(l-7)T)] rr G dQ rr 2HQ = V . V .  
r r dr 

(5.14) 

For V . V  we have from (5.2) and (4.7) 
r . E . r  

V . V = 2 € : ( V . C ) =  W(p)- (5.15) 
r2 ' 

where W ( p )  is the combination of the functions A and B defined in (4.8). (Note that the 
bulk rotation makes no contribution V . V  and that as a consequence the pair dis- 
tribution found from (5.14) for the case of strong Brownian motion is the same function 
of the bulk rate of strain E for all bulk flows with uniform velocity gradient'. Clearly 



Effect of Brownian motion on bulk stress 11 1 

the same remark can be made about the bulk stress.) Then since E is an arbitrary 
tensor equation (5.14) reduces to 

d p ( p z G $ ) - 6 H Q  d = -p2W. 
(5.16) 

The boundary conditions on Q are 

dQ 
dP 

G - = O  at p = 2  and Q+O as p+m. 

AS p + co both G and H tend to unity, corresponding to an isotropic relative dif- 
fusivity tensor at  large separations of the two spheres, and it follows from the asymp- 
totic form (4.9) for W ( p )  that the particular integral of (5.16) behaves as p-4 for p 8 1 ,  
and that the complementary function behaves as p-3 and is dominant. This asymptotic 
variation of Q(p)  as p-3 (and of p - 1 as r-3) is a consequence of the quadrupole char- 
acter of the source term V . V  (see (5.15)) in the diffusion equation (5.12).  It follows 
that the integral I r V p  dr is not absolutely convergent as r + 00; this is the reason 
why care was taken in $ 3  to avoid proceeding at too early a stage to a two-particle 

approximation to the sum - C xi Fi. 
1 N  
V i= l  

6. The pair-distribution function in the case of strong Brownian motion 
We proceed now to a numerical solution of (5.16),? making use of the available 

numerical values of G ( p )  and H ( p )  (see tables 1 and 2 and figure 3 of Batchelor 1976).  
We also make use of the known values of A(p)  and B(p) (see table 1 and the relations 
(4 .6 )  and (5 .17)  of Batchelor & Green 1972a)  to obtain values of W ( p )  from the relation 
(4 .8 ) .  Smooth curves were drawn through the tabulated values of G and H and W ,  
and values at  regular intervals of p, some of which are shown in table 1, were read off, 
the larger number of values needed for the numerical integration then being obtained 
by linear interpolation. In  the range 2 < p < 2-01, where H and W vary rapidly, 
linear interpolation is not accurate and so numerical values of these two functions 
were derived from analytical forms consistent with all the available information. 

In  order to be able to make use of the inner boundary condition we first investigate 
the form of the solution near p = 2, which is a regular point of the equation. It is 
known (Batchelor & Green 1972a)  that 

A(p) N 1 - 4-077& B(p)  + 0.406, as E-+ 0 ,  

where [ = p - 2 ,  whence it follows from (4.8) and (5.9) that 

W ( p )  + 6.372, G ( p )  N 2[ ,  H ( p )  -+ 0.401, as t;-+ 0. 

Near the point E = 0 the equation can therefore be written as 

d2Q dQ 
dE2 ,df 

t- +- - 0.301Q = - 3.186. 

t I acknowledge here the help with the numerical solution of equation (5.16) received from 
Dr C. C. Lin, who has been engaged in a similar study of the effect of Brownian motion on a dilute 
suspension of spherical particles in collaboration with Prof. N. F. Sather at the Department of 
Chemical Engineering, University of Washington (Lin 1973). 
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P G H W Q 
2.00 0 0.401 6.37 1.42 
2.01 0.019 0.493 5.14 1.40 
2.02 0.031 0.501 4.58 1.37 
2.04 0.059 0.5 17 3.72 1.32 
2-06 0.086 0-531 3.16 1.28 
2.08 0.111 0.544 2.70 1.23 
2.10 0.135 0.556 2.27 1.19 
2.15 0.178 0.577 1-73 1.10 
2.20 0.218 0.597 1.32 1.02 
2.30 0.273 0.626 0.83 0.88 
2.40 0.319 0.649 0.57 0.76 
2.60 0.392 0.681 0.30 0.59 
2.80 0.447 0.708 0.18 0.46 
3.00 0.49 1 04'30 0.11 0.37 
3.20 0.526 0.749 0.07 0.31 
3.60 0.58 1 0.781 0.04 0.21 
4.00 0.626 0.804 0.02 0.15 

TABLE 1. Values of the pair-distribution function Q ca.lculated from the two-sphere 
functions GI, H, W at different separations (p = ./a). 

The complement,ary function for this equation is 

where 7 = 2(0*301c)* and I,  and K O  are the Bessel functions of imaginary argument 
usually denoted by those symbols, a and /? being arbitrary constants. A particular 
integral of (6.1) is Q = 3.186/0.301 = 10.58. The requirement that 2c(d&/dc) be zero 
at  5 = 0 can be satisfied only if /? = 0. A solution of (6.1) which satisfies the boundary 
condition at 5 = 0 is therefore 

But (6.1) is a valid approximation to (5.16) only if contributions to W of smaller 
order than to are neglected. Hence what we learn from (6.3) is that 

Q = 10.58 +do(?). (6.3) 

Qo = 1 0 - 5 8 + ~ ,  QA = 0.30101. (6.4) 

It is also useful for numerical purposes to note the asymptotic form of the solution 
of (5.16) as p --f co. From the asymptotic forms of G, H and W given in (5.10) and (4.9) 
we find that 

where y is an unknown constant. 
The procedure adopted by R. W. O'Brien, who kindly carried out the numerical 

integration of equation (5.16) for me, was to assume a certain value for y and to 
integrate back from p = 4 (values of Q being given with sufficient accuracy by (6 .5)  at 
larger values of p). The correct value of y is then that for which the computed value of 
Q remains finite as p -+ 2. It was found, by using the Milne predictor-corrector method 
in the range 2.01 < p < 4 and the Runge-Kutta method in the range 2 < p < 2.01, 
that Q became proportional to log (p - 2)-1 in this latter range with a coefficient whose 
value depended on y .  The value of y for which this coefficient is zero was judged from 
trials to be 9.41. Table 1 shows the values of Q found in this way to satisfy equation 
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2.0 3.0 4.0 
P (=ria) 

FIGURE 1.  The scalar functions W ( p )  and Q ( p )  specifying V .  V and the pair-distribution function 
p ( r )  respectively. The broken line is the asymptotic form Q = ( 7 / p 3 )  + (37 - 25)/2p4, with 
y = 9.41. 

(5.16) and the boundary conditions at  both ends of the range, corresponding to the 
choice y = 9.41. Figure 1 shows both W and Q as functions of p ;  it appears that the 
asymptotic form (6.5), with y = 9-41, is in fact a fair approximation to Q over the 
whole range. The pair-distribution function for the case EaZ/D, < 1 is then given, 
correct to  order Ea2/Do, by (5.11) and (5.13) with these values of Q. 

7. The bulk stress to order $2 in the case of strong Brownian motion 
The complete and exact expression for the bulk stress has been given in (2.9). 
An approximate form of the term n(SH> in (2.9) correct to the order $2 is provided 

by (4.2). This term represents the hydrodynamic effects of the particles in the given 
bulk flow but is not completely independent of the existence of Brownian motion 
because Brownian diffusion affects the form of the particle pair-distribution function. 
In  the case of relatively strong Brownian motion (i.e. Ea2/Do 4 l),  the pair-distribu- 
tion function is approximately uniform (see (5.1 1)  and (5.13)) regardless of the nature 
of the bulk flow, and so the value of n(SH) correct to the orders of d2 and (Ea2/D0)O 
in the small quantities $ and Ea2/Do is obtained from the expression (4.2) with p = 1. 
The integral term in (4.2) has previously been evaluated with p = 1 (Batchelor & 
Green 1972b) for use in the context of solid elastic composite materials €or which the 
pair-distribution function might be uniform as a consequence of the method of 
manufacture, and the result is 

n ( S H )  = 2p(&$ + 5.2rp2) E. (7.1) 
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FIGURE 2.  Measurements by Krieger (1972) of the effective viscosity of a suspension of rigid 
spherical particles in simple shearing flow at  low rates of shear (Ea2/D, .g 1).  The broken line is the 
theoretical relation (7.4) correct to order @. 

$ 

The Newtonian form of (7.1) is a consequence of the (approximate) isotropy of the 
distribution of particle pairs. 

The approximate form, correct to order 4') of the last two terms in (2.9) representing 
the direct contribution to  the bulk stress due to  Brownian motion is given in (4.12). 
Here we need a better approximation to the pair-distribution function than p = 1, 
because with a uniform pair-distribution function the deviatoric part of the expression 
(4.12) is zero. Furthermore, the integral in (4.12) is multiplied by kT, which is large 
compared with pa3E when Brownian motion effects are dominant, so the small 
departure from uniformity of the pair-distribution function leads to a direct contribu- 
tion to the bulk stress which is independent of ET and is comparable with the ($2-term 
in the) hydrodynamic contribution (7.1). On substituting in (4.12) the expression for 
p given by (5.11) and (5.13)) and remembering that Do = kT/3rpa, we find 

P m  

A numerical integration using the values of the functions W(p)  and &(p) shown in 
table 1 and figure 1 gives the value of the integral in (7.2) as 4.3. The right-hand side 
of (7.2) is thus 

I.T. + 2p(0*97$') E. (7.3) 

It appearsfrom (7.1) and (7.3) that, when Ea2/Do < 1,  the deviatoric part of the bulk 
stress to order q5z is of Newtonian form, regardless of the form of the bulk flow, and 
is the same as that for a fluid with the viscosity 

p* = p( 1 + $4 + 6.24'). (7.4) 

Newtonian behaviour of the stress to leading order in the small quantity Ea2/D, is 
of course a general property of a system subjected to a small departure from a state 
of thermodynamic equilibrium, and is to be expected at  all values of $. However, the 
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next approximation to the bulk stress, of order Ea2/Do, will not be of Newtonian 
form, and in particular there will be non-zero differences between the normal stresses. 
These normal stress differences could be found from an extension of the above per- 
turbation calculation, but it is doubtful whether the labour would be justified since a 
quantity of order $2Ea2/Do in the small quantities $ and Ea2/D, is unlikely to be 
measurable. 

Measured values of the effective viscosity of a suspension of spheres a t  small con- 
centrations have not yet yielded an empirical value of the coefficient of $,. One of the 
best available sets of measurements a t  low rates of strain was made by Krieger (l972), 
who took care to minimize the effect of charges at the particle surfaces. His observations 
and the relation (7.4) are shown in figure 2,  but there are too few observations at  
small concentrations to allow any conclusions from the comparison. 

It appears, from a comparison of (7.4) with the expression (1.2) for the effective 
viscosity of the suspension when it is subjected to a steady bulk pure straining motion 
with Ea2/Do 9 1,  that there is some ‘strain thickening’ in the $,-term, although the 
change is only about 20 yo, Qualitatively the reason for the strain thickening is similar 
t o  that in the $-term for the simpler case of a dilute suspension of rod-like particles 
without particle interactions (see figure 1 of the review by Leal & Hinch 1973). The 
effect of increasing the magnitude of the bulk rate of strain relative to the Brownian 
diffusivity is t o  increase the non-uniformity of the relevant particle probability dis- 
tribution in each case, the pair-distribution function being increased a t  small separation 
in the case of the spheres (see the pair-distribution function for the case of negligible 
Brownian motion in figure 1 of Batchelor & Green 19726) and the directional prob- 
ability density being increased a t  directions near to that of the greatest principal rate 
of bulk strain in the case of the rods, and the result of this non-uniformity is to put 
more particles into configurations where they make a greater contribution to the 
bulk stress. The direct contribution to the bulk stress due to Brownian motion is zero 
in the limit Ea2/Do+m, and so changes with Ea2/Do in the direction opposite to that 
of the indirect contribution, but it turns out that this is a smaller effect in both these 
cases. 

It would be interest,ing to make a similar comparison of (7.4) with the bulk stress 
calculated to order for large‘values of Ea2/Do in the case of a steady simple shearing 
motion, and to see if there is any indication of the ‘shear thinning’ observed by 
Krieger in the range 0-30 < $ < 0.45. However, this will not be possible until the 
difficult calculation of the pair-distribution function for a simple shearing motion 
with Ea2/Do $ 1 has been completed. The pair-distribution function will not be iso- 
tropic in this latter case, and so the stress will not be of Newtonian form. Table 2 
summarizes the present state of calculations of the bulk stress to order in a suspen- 
sion of spheres. 

A final remark about the qualitative aspects of the direct contribution to the bulk 
stress due to Brownian motion may be useful. As we have seen, when Ea2/Do 9 1 the 
pair-distribution function is unaffected by the existence of a bulk rate of rotation and 
is given approximately in terms of the instantaneous bulk rate of strain by (5.11) and 
(5.13). Take for simplicity a case of two-dimensional bulk straining motion, with 
El, > 0 and E,, < 0 and hydrodynamic trajectories of one sphere centre relative to 
another as indicated in figure 3. I n  the parts of the (r l ,  r,)-plane where V . V < 0, near 
the positive and negative r,-axes (see (5.15)), the rate of generation of particle pairs 

, 
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Contribution 
to coefficient 
of $8 in 
expression 
forP*IP 

EcbyBo% 1 
r------* 7 

Pure Simple 
Ea2/Do < 1 straining shearing 

Pair-distribution Approximately Non-uniform, Non-uniform, 
function p(r) uniform isotropic non-isotropic 

(P = 1) 

p = l  5.2 5.2 5.2 
fHydrodynamic part with 

Extra hydrodynamic part 

Direct contribution due 
due to non-uniformity of p 0 2.4 ? 

to Brownian motion 1.0 0 0 

(Total 6.2 7.6 ? 

TABLE 2. Theoretical results for the bulk stress to order 
$, in a dilute suspension of spheres. 

pair density increased 

by the straining motion 

FIGURE 3. Sketch showing (in one quadrant only) the directions of the relative velocity V of two 
spheres in a two-dimensional pure straining motion and of the thermodynamic force F, on the 
second sphere (F, = - F,) in the case of low rates of strain (Ea2/D, < 1). The force system opposes 
the straining motion in the manner of a Newtonian viscosity. 

per unit volume of r-space by hydrodynamic action is positive. In the absence of 
Brownian motion a material point coming from infinity on a trajectory enters a region 
of pair-density production and later moves away from the sphere a t  the origin through 
a region of pair-density destruction, the effects of which are to make p > 1 (and, less 
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obviously, to make p a function of r alone) in the central region of the plane. But when 
Brownian motion is strong (Eu2/D, < 1) most of this non-uniformity ofp  is eliminated 
by diffusion, leaving only a small excess in the source region near the r,-axis and a 
small deficiency in the sink-region near the rl-axis (see (5.13)). The direction of the 
flux of particle pairs due to Brownian diffusion, i.e. the direction of the thermodynamic 
force on one sphere, a t  any point is down the gradient of p and is indicated in figure 3. 
This force system generates a contribution to the average stress in the medium which 
the figure shows clearly to be a tension in the direction of the rl-axis and a thrust in 
the direction of the r2-axis, thus opposing the bulk deforming motion in the manner 
of a Newtonian viscous stress. 
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